In class Exercise 1: First Geospatial DA

Published

November 18, 2023

Modified

November 27, 2023

Getting Started

The code chunk below loadfs the following packages:

  • tmap for thematic mapping
  • sf for geospatial data handling
  • tidyverse for non-spatial data handling
pacman::p_load(tmap, sf, tidyverse)

Importing the OD Data

Firstly we will import the Passenger volume by Origin Destination Bus Stops data set downloaded from LTA DataMall by using read_csv() of readr package.

odbus <- read_csv("data/aspatial/origin_destination_bus_202308.csv")
origtrip_7_9 <- odbus %>%
  filter(DAY_TYPE == "WEEKDAY") %>%
  filter(TIME_PER_HOUR >= 7 &
           TIME_PER_HOUR <= 9) %>%
  group_by(ORIGIN_PT_CODE) %>%
  summarise(TRIPS = sum(TOTAL_TRIPS))
odbus$ORIGIN_PT_CODE <-
as.factor(odbus$ORIGIN_PT_CODE)
odbus$DESTINATION_PT_CODE <-
as.factor(odbus$DESTINATION_PT_CODE)
busstop <- st_read(dsn = "data/geospatial", layer ="BusStop") %>% st_transform(crs = 3414)
Reading layer `BusStop' from data source 
  `/Users/youting/ytquek/ISSS624/In-class Exercise/In-class Exercise 1/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 5161 features and 3 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 3970.122 ymin: 26482.1 xmax: 48284.56 ymax: 52983.82
Projected CRS: SVY21
mpsz <- st_read(dsn = "data/geospatial", layer =  "MPSZ-2019") %>% st_transform(crs = 3414)
Reading layer `MPSZ-2019' from data source 
  `/Users/youting/ytquek/ISSS624/In-class Exercise/In-class Exercise 1/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 332 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 103.6057 ymin: 1.158699 xmax: 104.0885 ymax: 1.470775
Geodetic CRS:  WGS 84
mpsz
Simple feature collection with 332 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21 / Singapore TM
First 10 features:
                 SUBZONE_N SUBZONE_C       PLN_AREA_N PLN_AREA_C       REGION_N
1              MARINA EAST    MESZ01      MARINA EAST         ME CENTRAL REGION
2         INSTITUTION HILL    RVSZ05     RIVER VALLEY         RV CENTRAL REGION
3           ROBERTSON QUAY    SRSZ01  SINGAPORE RIVER         SR CENTRAL REGION
4  JURONG ISLAND AND BUKOM    WISZ01  WESTERN ISLANDS         WI    WEST REGION
5             FORT CANNING    MUSZ02           MUSEUM         MU CENTRAL REGION
6         MARINA EAST (MP)    MPSZ05    MARINE PARADE         MP CENTRAL REGION
7                   SUDONG    WISZ03  WESTERN ISLANDS         WI    WEST REGION
8                  SEMAKAU    WISZ02  WESTERN ISLANDS         WI    WEST REGION
9           SOUTHERN GROUP    SISZ02 SOUTHERN ISLANDS         SI CENTRAL REGION
10                 SENTOSA    SISZ01 SOUTHERN ISLANDS         SI CENTRAL REGION
   REGION_C                       geometry
1        CR MULTIPOLYGON (((33222.98 29...
2        CR MULTIPOLYGON (((28481.45 30...
3        CR MULTIPOLYGON (((28087.34 30...
4        WR MULTIPOLYGON (((14557.7 304...
5        CR MULTIPOLYGON (((29542.53 31...
6        CR MULTIPOLYGON (((35279.55 30...
7        WR MULTIPOLYGON (((15772.59 21...
8        WR MULTIPOLYGON (((19843.41 21...
9        CR MULTIPOLYGON (((30870.53 22...
10       CR MULTIPOLYGON (((26879.04 26...

Extracting the data for Analysis

glimpse(mpsz)
Rows: 332
Columns: 7
$ SUBZONE_N  <chr> "MARINA EAST", "INSTITUTION HILL", "ROBERTSON QUAY", "JURON…
$ SUBZONE_C  <chr> "MESZ01", "RVSZ05", "SRSZ01", "WISZ01", "MUSZ02", "MPSZ05",…
$ PLN_AREA_N <chr> "MARINA EAST", "RIVER VALLEY", "SINGAPORE RIVER", "WESTERN …
$ PLN_AREA_C <chr> "ME", "RV", "SR", "WI", "MU", "MP", "WI", "WI", "SI", "SI",…
$ REGION_N   <chr> "CENTRAL REGION", "CENTRAL REGION", "CENTRAL REGION", "WEST…
$ REGION_C   <chr> "CR", "CR", "CR", "WR", "CR", "CR", "WR", "WR", "CR", "CR",…
$ geometry   <MULTIPOLYGON [m]> MULTIPOLYGON (((33222.98 29..., MULTIPOLYGON (…

Importing polyline feature data in shapefile form

cyclingpath = st_read(dsn = "data/geospatial", 
                         layer = "CyclingPathGazette") 
Reading layer `CyclingPathGazette' from data source 
  `/Users/youting/ytquek/ISSS624/In-class Exercise/In-class Exercise 1/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 2558 features and 2 fields
Geometry type: MULTILINESTRING
Dimension:     XY
Bounding box:  xmin: 11854.32 ymin: 28347.98 xmax: 42626.09 ymax: 48948.15
Projected CRS: SVY21

Importing GIS data in kml format

preschool = st_read("data/geospatial/PreSchoolsLocation.kml") 
Reading layer `PRESCHOOLS_LOCATION' from data source 
  `/Users/youting/ytquek/ISSS624/In-class Exercise/In-class Exercise 1/data/geospatial/PreSchoolsLocation.kml' 
  using driver `KML'
Simple feature collection with 2290 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6878 ymin: 1.247759 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84

The message above reveals that preschool is a point feature data frame. There are a total of 2290 features and 2 fields. Different from the previous two simple feature data frame, preschool is in wgs84 coordinates system.

Checking the Content of A Simple Feature Data Frame

st_geometry(mpsz)
Geometry set for 332 features 
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21 / Singapore TM
First 5 geometries: